Micronutrient deficiencies, particularly in iron (Fe) and zinc (Zn), remain among the most serious global public health challenges, especially in developing countries where populations depend heavily on a limited number of staple foods (Bouis & Saltzman, 2017; FAO et al., 2020). Iron deficiency is the leading cause of anemia, affecting nearly 30% of the global population, while zinc deficiency weakens immune function, increases susceptibility to infectious diseases, and contributes to growth retardation in children (WHO, 2020; Prasad, 2013). Addressing these issues requires sustainable, food-based strategies such as the biofortification of staple crops, which offers a long-term solution to hidden hunger.
The substantial genetic diversity present in rice (Oryza spp.) provides valuable opportunities to identify nutrient-dense genotypes for direct consumption or for use in breeding programs aimed at improving nutritional quality. In unpolished brown rice, Fe concentrations typically range from 6.9 to 22.3 mg/kg, whereas Zn concentrations vary between 14.5 and 35.3 mg/kg (Maganti et al., 2020). Using X-ray fluorescence (XRF) spectroscopy, we analyzed the nutritional profiles of 926 accessions from the minicore collections of Oryza glaberrima and Oryza sativa. We identified 28 dual iron- and zinc-rich accessions (13 O. glaberrima and 15 O. sativa), with Fe concentrations ranging from 23 to 35.5 mg/kg and Zn concentrations from 30 to 37 mg/kg in unpolished grains.
This revised collection differs from the previous dataset by the addition of 10 supplementary accessions, including 2 O. glaberrima and 8 O. sativa. These dual-nutrient-rich accessions represent promising candidates for the development of biofortified rice varieties adapted to African agro-ecological zones and capable of addressing key micronutrient deficiencies.
MCPD passport data
MCPD - 4e60f92b-e271-4e81-8229-e61007530e6c.xlsx
Apply custom filters to accessions in this subset
Explore subset accessions on the map
List of accessions included in the subset
CIV033 • DOI: 10.18730/SEA2TCIV033 • DOI: 10.18730/H9RZ9CIV033 • DOI: 10.18730/HBX47CIV033 • DOI: 10.18730/HBY42CIV033 • DOI: 10.18730/HBYNKCIV033 • DOI: 10.18730/HQCG$CIV033 • DOI: 10.18730/HC7RECIV033 • DOI: 10.18730/HD5XHCIV033 • DOI: 10.18730/HE9MDCIV033 • DOI: 10.18730/SCPF3CIV033 • DOI: 10.18730/HJ568CIV033 • DOI: 10.18730/HJ93PCIV033 • DOI: 10.18730/HJC59CIV033 • DOI: 10.18730/HMV7QCIV033 • DOI: 10.18730/HP5E5CIV033 • DOI: 10.18730/SCFE0CIV033 • DOI: 10.18730/1KGSCHCIV033 • DOI: 10.18730/1KGSKRCIV033 • DOI: 10.18730/1KGTNNCIV033 • DOI: 10.18730/1KGTWWCIV033 • DOI: 10.18730/1KGW8=CIV033 • DOI: 10.18730/1KGWH7CIV033 • DOI: 10.18730/1KGXXECIV033 • DOI: 10.18730/1KH08FCIV033 • DOI: 10.18730/1KH179CIV033 • DOI: 10.18730/1KH1ACCIV033 • DOI: 10.18730/1KH1WYCIV033 • DOI: 10.18730/1KH1XZ