An important global cereal used for livestock feed and human nutrition, yet its productivity is increasingly challenged by climate-driven biotic and abiotic stresses. To accelerate the development of dual-purpose, stress-resilient, and high-yielding cultivars for subtropical agroecologies, we assessed the genetic structure and agronomic performance of a 169-line oat association panel. The panel was phenotyped for key vegetative, forage-quality, and grain traits across three subtropical sites in Sub-Saharan Africa over two seasons and genotypes using GBS. SNP-based diversity analyses revealed moderate genetic variation (He = 0.39; PIC = 0.30), and population structure analysis identified two major subgroups with evidence of admixture. Genome-wide association analysis detected 42 significant SNP–trait associations (FDR < 0.05) and 46 candidate genes. Notable candidates included homologs of rice OsAK3 and GSA1, associated with grain size, and a VPS25 homolog implicated in intracellular trafficking and endosperm development. These candidates were located near QTL influencing seed dimensions and thousand-grain weight. By elucidating the genetic basis of yield, quality, and resilience traits, this study provides valuable genomic resources and trait-linked markers to support genomics-assisted breeding of climate-resilient, high-performing oat varieties for subtropical production systems.
MCPD passport data
MCPD - 533acf6b-0b2e-46a8-b29c-5d1d1a93a523.xlsx
Apply custom filters to accessions in this subset
Explore subset accessions on the map
List of accessions included in the subset
ETH013 • DOI: 10.18730/G53C9ETH013 • DOI: 10.18730/G53NJETH013 • DOI: 10.18730/G53PKETH013 • DOI: 10.18730/G53RNETH013 • DOI: 10.18730/G544~ETH013 • DOI: 10.18730/G545$ETH013 • DOI: 10.18730/G547UETH013 • DOI: 10.18730/G5480ETH013 • DOI: 10.18730/G54A2ETH013 • DOI: 10.18730/G54E6ETH013 • DOI: 10.18730/G54JAETH013 • DOI: 10.18730/G54MCETH013 • DOI: 10.18730/G54PEETH013 • DOI: 10.18730/G54VKETH013 • DOI: 10.18730/G54XNETH013 • DOI: 10.18730/G54YPETH013 • DOI: 10.18730/G550RETH013 • DOI: 10.18730/G551SETH013 • DOI: 10.18730/G559~ETH013 • DOI: 10.18730/G55A$ETH013 • DOI: 10.18730/G55D0ETH013 • DOI: 10.18730/G55K6ETH013 • DOI: 10.18730/G55M7ETH013 • DOI: 10.18730/G55RBETH013 • DOI: 10.18730/G55SCETH013 • DOI: 10.18730/G55TDETH013 • DOI: 10.18730/G55YHETH013 • DOI: 10.18730/G55ZJETH013 • DOI: 10.18730/G561METH013 • DOI: 10.18730/G562NETH013 • DOI: 10.18730/G563PETH013 • DOI: 10.18730/G564QETH013 • DOI: 10.18730/G56BYETH013 • DOI: 10.18730/G56D*ETH013 • DOI: 10.18730/G56E~ETH013 • DOI: 10.18730/G56F$ETH013 • DOI: 10.18730/G56HUETH013 • DOI: 10.18730/G56J0ETH013 • DOI: 10.18730/G56N3ETH013 • DOI: 10.18730/G56R6ETH013 • DOI: 10.18730/G56WAETH013 • DOI: 10.18730/G56ZDETH013 • DOI: 10.18730/G570EETH013 • DOI: 10.18730/G571FETH013 • DOI: 10.18730/G572GETH013 • DOI: 10.18730/G573HETH013 • DOI: 10.18730/G574JETH013 • DOI: 10.18730/G575KETH013 • DOI: 10.18730/G576METH013 • DOI: 10.18730/G5Y1B