An inner core of 61 accessions of Medicago truncatula was developed by Ellwood (2006) from the broader 232 accession core for this species developed by Skinner et al (1999a,b). Although the inner core was developed from just six simple sequence repeat (SSR) loci (an adequate method at the time of publishing), it has been used with success by breeders of annual medics looking for diversity in new traits (D. Peck Pers. Com 2023). The inner core should be considered in combination with the larger core developed by Skinner et al (1999a,b).
Ellwood et al (2006) showed the collection to be highly diverse, exhibiting an average of 25 SSR alleles per locus, with over 90% of individuals showing discrete genotypes. The rich diversity of the SARDI collection provides an invaluable resource for studying natural allelic variation of M. truncatula. To efficiently exploit the variation in the SARDI collection, a subset of accessions (n=61) was defined that maximises the diversity. The APG has 58 accessions identified as the inner core, which are available for order.
References:
Skinner, D.Z., Bauchan, G.R., Auricht, G., Hughes, S. (1999a) In “Core collections for today and tomorrow”, Eds. Johnson, R.C. and T. Hodgkin. International Plant Genetic Resources Institute, Rome, Italy.
Skinner, D.Z., Bauchan, G.R., Auricht, G., Hughes, S. (1999b) A Method for the Efficient Management and Utilization of Large Germplasm Collections. Crop Science, 39, 4 1237-1242.
Ellwood, S.R., D’Souza, N.K., Kamphuis, L.G. Burgess, T.I. Nair, R.M., Oliver, R.P. (2006) SSR analysis of the Medicago truncatula SARDI core collection reveals substantial diversity and unusual genotype dispersal throughout the Mediterranean basin, Theoretical and Applied Genetics, 112, 5, 977-983.
MCPD passport data
MCPD - bc352749-e9ac-442b-b1fa-3d17b9ee742b.xlsx
Apply custom filters to accessions in this subset
Explore subset accessions on the map
List of accessions included in the subset
AUS167
• DOI: 10.18730/13WS7JAUS167
• DOI: 10.18730/13XNZDAUS167
• DOI: 10.18730/13XVSEAUS167
• DOI: 10.18730/13YGKEAUS167
• DOI: 10.18730/13YHC2AUS167
• DOI: 10.18730/13YHPCAUS167
• DOI: 10.18730/13YHQDAUS167
• DOI: 10.18730/13Z5KMAUS167
• DOI: 10.18730/13ZC25AUS167
• DOI: 10.18730/13ZC9CAUS167
• DOI: 10.18730/13ZE70AUS167
• DOI: 10.18730/13ZHY8AUS167
• DOI: 10.18730/13ZW52AUS167
• DOI: 10.18730/14077QAUS167
• DOI: 10.18730/140CJ9AUS167
• DOI: 10.18730/142B3CAUS167
• DOI: 10.18730/143Z08AUS167
• DOI: 10.18730/144A4ZAUS167
• DOI: 10.18730/144N1AAUS167
• DOI: 10.18730/144PBFAUS167
• DOI: 10.18730/144SM9AUS167
• DOI: 10.18730/144TC~AUS167
• DOI: 10.18730/144TD$AUS167
• DOI: 10.18730/144TXDAUS167
• DOI: 10.18730/1453FWAUS167
• DOI: 10.18730/14542AAUS167
• DOI: 10.18730/145H7RAUS167
• DOI: 10.18730/145H8SAUS167
• DOI: 10.18730/145MBDAUS167
• DOI: 10.18730/145RQ5AUS167
• DOI: 10.18730/145VZ=AUS167
• DOI: 10.18730/145WVTAUS167
• DOI: 10.18730/14615GAUS167
• DOI: 10.18730/1461FTAUS167
• DOI: 10.18730/146J11AUS167
• DOI: 10.18730/146MC2AUS167
• DOI: 10.18730/1482J0AUS167
• DOI: 10.18730/14B9ZGAUS167
• DOI: 10.18730/14BZA~AUS167
• DOI: 10.18730/14DJH7AUS167
• DOI: 10.18730/14EFZRAUS167
• DOI: 10.18730/14H8D5AUS167
• DOI: 10.18730/14KPEQAUS167
• DOI: 10.18730/14MCV0AUS167
• DOI: 10.18730/14MH5VAUS167
• DOI: 10.18730/14MS3PAUS167
• DOI: 10.18730/14NP5VAUS167
• DOI: 10.18730/14NPP7AUS167
• DOI: 10.18730/14NQG~AUS167
• DOI: 10.18730/14PTH7