Pigeonpea is an important pulse crop grown by smallholder farmers in the semi-arid tropics. Most of the pigeonpea cultivars grown to date are selections from the landraces, with a narrow genetic base. With the expansion of the crop to newer areas, problems of local importance are to be addressed. Hence, an economically feasible and faster germplasm evaluation mechanism, such as a core collection, is required. This article describes the development of core collection from 12,153 pigeonpea accessions collected from 56 countries and maintained at ICRISAT, Patancheru, India.
The germplasm accessions from 56 countries were placed under 14 clusters based primarily on geographic origin. Data on 14 qualitative morphological traits were used for cluster formation by Wards method. From each cluster ≈10% accessions were randomly selected to constitute a core collection comprising 1290 accessions. Mean comparisons using NewmanKeuls test, variances comparisons by Levenes test, and comparison of frequency distribution by chi square test indicated that the core collection was similar to that of the entire collection for various traits and the genetic variability available in the entire collection is preserved in the core collection. The ShannonWeaver diversity index for different traits was also similar for both entire and core collection. All the important phenotypic associations between different traits available in the entire collection were preserved in the core collection.
The core collection constituted in the present study facilitates identification of useful traits economically and expeditiously for use in pigeonpea improvement.
MCPD passport data
MCPD - f0f203b2-7e26-4804-94f5-ac4869a34c26.xlsx
Apply custom filters to accessions in this subset
Explore subset accessions on the map
List of accessions included in the subset
IND002
• DOI: 10.18730/PXHQPIND002
• DOI: 10.18730/PXHRQIND002
• DOI: 10.18730/PXHTSIND002
• DOI: 10.18730/PXJE8IND002
• DOI: 10.18730/PXJJCIND002
• DOI: 10.18730/PXJWPIND002
• DOI: 10.18730/PXJYRIND002
• DOI: 10.18730/PXK5ZIND002
• DOI: 10.18730/PXMAZIND002
• DOI: 10.18730/PXMYEIND002
• DOI: 10.18730/PXPCQIND002
• DOI: 10.18730/PXQ9FIND002
• DOI: 10.18730/PXR56IND002
• DOI: 10.18730/PXR89IND002
• DOI: 10.18730/PXRCDIND002
• DOI: 10.18730/PXRKMIND002
• DOI: 10.18730/PXRWXIND002
• DOI: 10.18730/PXS3UIND002
• DOI: 10.18730/PXSGCIND002
• DOI: 10.18730/PXT0WIND002
• DOI: 10.18730/PXT5~IND002
• DOI: 10.18730/PXTC3IND002
• DOI: 10.18730/PXTD4IND002
• DOI: 10.18730/PXTG7IND002
• DOI: 10.18730/PXTQEIND002
• DOI: 10.18730/PXV0QIND002
• DOI: 10.18730/PXV6XIND002
• DOI: 10.18730/PXVXFIND002
• DOI: 10.18730/PXWDZIND002
• DOI: 10.18730/PXWM1IND002
• DOI: 10.18730/PXWR5IND002
• DOI: 10.18730/PXX1EIND002
• DOI: 10.18730/PXXX5IND002
• DOI: 10.18730/PXY9HIND002
• DOI: 10.18730/PXYGRIND002
• DOI: 10.18730/PXYJTIND002
• DOI: 10.18730/PY00=IND002
• DOI: 10.18730/PY0DBIND002
• DOI: 10.18730/PY0MJIND002
• DOI: 10.18730/PY0NKIND002
• DOI: 10.18730/PY170IND002
• DOI: 10.18730/PY1E7IND002
• DOI: 10.18730/PY1RHIND002
• DOI: 10.18730/PY20SIND002
• DOI: 10.18730/PY21TIND002
• DOI: 10.18730/PY2F3IND002
• DOI: 10.18730/PY31NIND002
• DOI: 10.18730/PY39XIND002
• DOI: 10.18730/PY3AYIND002
• DOI: 10.18730/PY3E$